# A Longitudinal Analysis of K12 Computing Education Research in the U.S.: Implications and Recommendations for Change

csedresearch.org

Bishakha Upadhyaya Knox College Dr. Monica McGill Knox College & CSEdResearch.org Dr. Adrienne Decker University at Buffalo

## Thank you to our sponsors!

Knox College - Baker Velde Grant:

STEM Research Scholarship Grant for Undergraduate Students



This material is based upon work supported by the U.S. National Science Foundation under Grant Nos. 1625005, 1625335, 1757402, 1745199 and 1933671. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation



#### Introduction

- What we know:
  - That K-12 CS Education is in its infancy
  - O So, K-12 CS Education Research is also still in its infancy
  - The U.S. has a decentralized education system differing policies for different states and districts
  - O 44 of the 50 states have some policy in place to bring computing into K-12 schools (Code.org)



## Research Question

Over the last seven years (2012-2018), what have been the major trends in K-12 computer science education research in the U.S.?

- Locations of students/interventions studied
- Type of articles (research, experience, position paper)
- Program data (e.g., concepts taught, when activity offered, etc.)
- Student data (e.g., disabilities, gender, race/ethnicity, SES)



## Why is this important?

- If the data is robust:
  - Analysis can provide a longitudinal trend of what the research shows and we can start to see trends develop to help predict future trends
  - Identify gaps in what is being researched

- If the data is not robust:
  - Gives us data needed to improve the state of the field
  - Gaps in what is reported

## Methodology

- Analyzed the data from CSEdResearch.org dataset
  - Ten publication venues (ACM/IEEE + a couple of others)
  - 0 2012-2018
  - All manually curated data
- Most of the data is from U.S. researchers at present, so we chose to focus on U.S. only for now
- Focused on articles that had K-12 students as participants
- The dataset is available to the public (just contact us)
- SQL queries were added to a Tableau workbook that pulled data from the site
- Visual graphics were created from the results

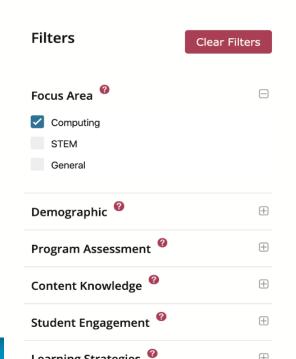
## CSEdResearch.org

Evaluation instruments for computing

Data manually curated from articles

Research guides




#### Evaluation Instruments for CS Ed

### Evaluation Instruments Find Instruments

AAA

Show: 10 **♦** 

Q





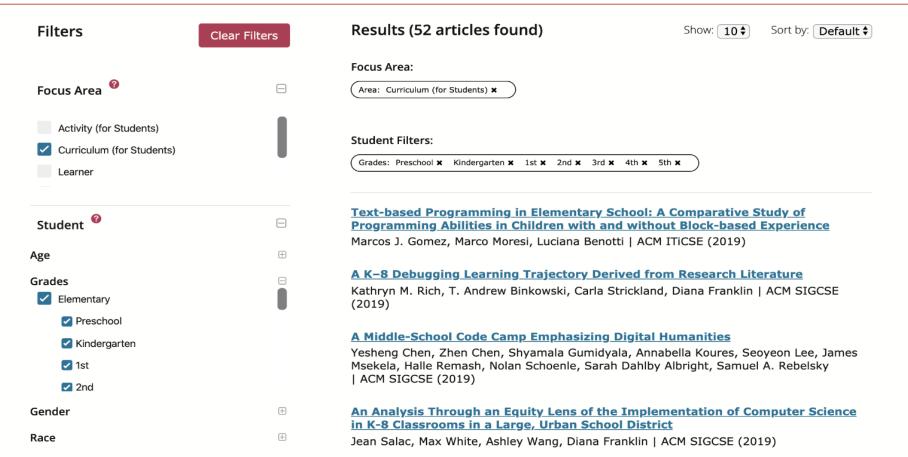
Focus Area: Computing 🗙

#### Algorithm Analysis Concept Inventory | 2016

Concept inventory for algorithm analysis (CS3) courses at the university level.

#### Algorithms and Data Structures Concept Inventory | 2012

Measures students' knowledge of algorithms and data structures.


#### Attitudes about Computers and Computer Science | 2010

Measures understanding of students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career.

#### **Basic Data Structures Inventory** | 2019

Measures basic concepts related to data structures.

# Article Summary Search Capability



### **Article Summaries**

#### **General Characteristics**

| Venue                   | ACM ITICSE                                                                                                                                                                                                                       |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>Publication Year</b> | 2019                                                                                                                                                                                                                             |  |  |
| Abstract                | "We describe lessons learned from using the ai<br>Norwegian upper secondary school to compute                                                                                                                                    |  |  |
| Authors                 | Bjørn Fjukstad Nina Angelvik Morten Grønnesby Maria Wulff Hauglann Hedinn Gunhildrud Fredrik Høisæther Rasch Julianne Iversen Margaret Dalseng Lars Ailo Bongo                                                                   |  |  |
| URL                     | https://doi.org/10.1145/3304221.3325527                                                                                                                                                                                          |  |  |
| Citation (APA Style)    | Fjukstad, B., Angelvik, N., Grønnesby, M., Hau M. & Bongo, L.A (2019). ACM Innovation and and Programming in Norwegian Schools Using https://doi.org/10.1145/3304221.3325527.                                                    |  |  |
| Citation (Bibtex Style) | @inproceedings{fjukstad2019teaching, author Hauglann, Maria Wulff, Gunhildrud, Hedinn, Ra and Bongo, Lars Ailo}, year={2019}, title={Te the air:bit Sensor Kit}, booktitle={ACM Innova {https://doi.org/10.1145/3304221.3325527} |  |  |

| Report Type       | Experience                                                                                                                                                                                    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Focus Area        | Activity (for Students)                                                                                                                                                                       |
| Study Design      | Cross-Sectional                                                                                                                                                                               |
| Research Approach | Quantitative                                                                                                                                                                                  |
| What Measured     | Satisfaction, how much time the students spent working, if students used online materials, the part, prior experience, and if the students learned the programming specific learning outcomes |
| Replication Study | No                                                                                                                                                                                            |

#### **Student Characteristics**

| Participants    | 104                   |
|-----------------|-----------------------|
| Student Grades  | 9th, 10th, 11th, 12th |
| Student Country | Norway                |

164

Student Prior
When surveyed, most students had little or some knowledge of programming.

Instructor Characteristics

Number Instructor

**Number Student** 

r

#### Research Guide

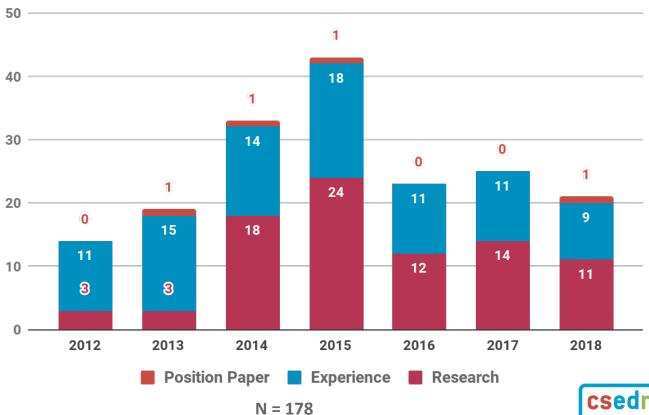
#### Write a Research Question

Before you begin writing your research question, it is first important to craft a purpose statement. What can be a purpose of your study?

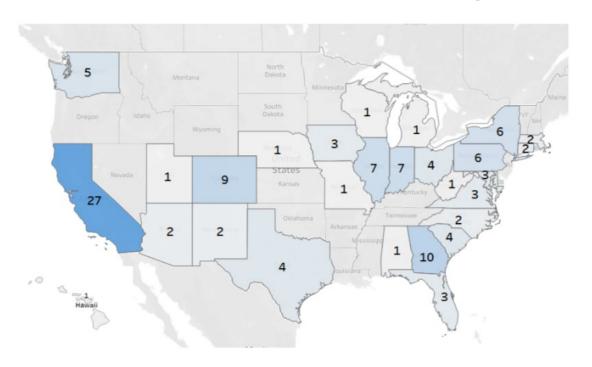
Examples of a purpose for a quantitative study include:

- Examining a relationship between students who take computing classes in high school and those
  who pursue computer science as a major in college,
- Evaluating the effectiveness of an outreach activity among underrepresented students, or
- · Measuring engagement or interest in computing among middle school students.

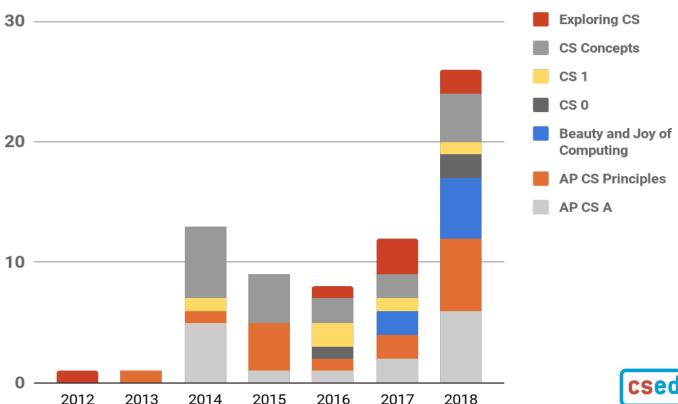
Examples for a qualitative study include:


- · Exploring parent stories about helping their students with computing homework or
- Developing a theory of effective management techniques in a computer lab.

Once you define the purpose of your study, you can then create a clear purpose statement. Purpose statements help you define your research in a straightforward manner. Here is an example of a well-defined purpose statement.


The purpose of this study is to examine the relationship between the completion of an 9-week computational thinking unit among 7th and 8th grade students in a rural middle school and student achievement on mathematics exams.



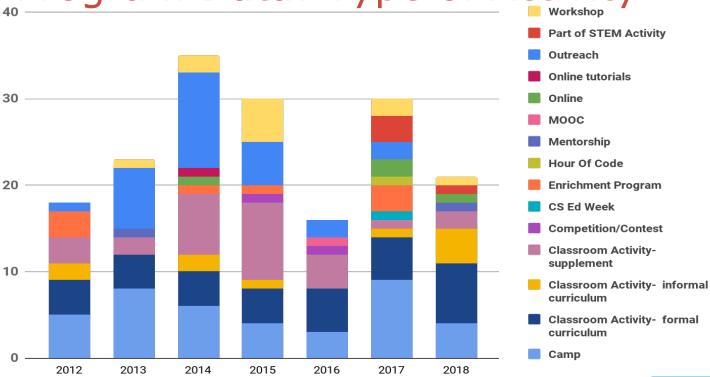

## Results: Type of Articles



## Locations of Student Participants

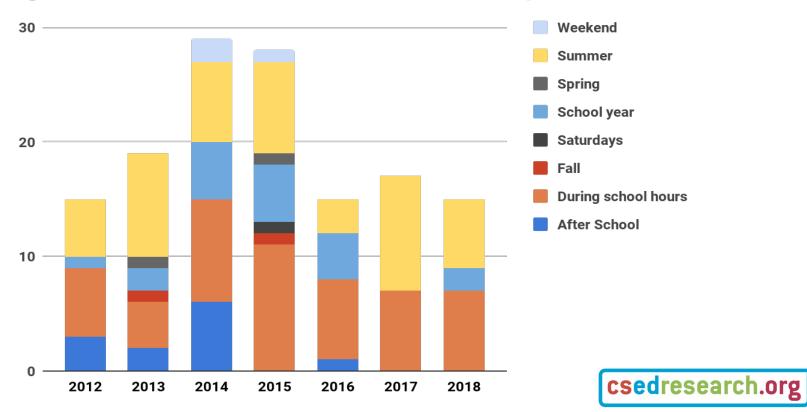


# Program Data: Curriculum Taught

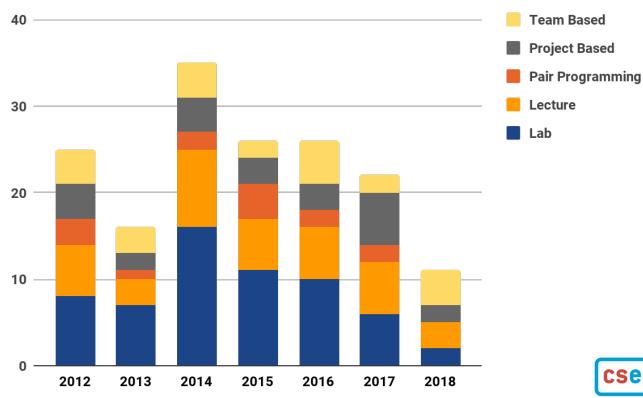



#### Program Data: Most Frequent Concepts Taught

| 2012                          | 2015                        | 2018                       |
|-------------------------------|-----------------------------|----------------------------|
| Programming (11)              | Programming (20)            | Programming (6)            |
| AI (3)                        | Problem Solving Skills (12) | Computational Thinking (4) |
| Design Skills (3)             | Computational Thinking (12) | Abstraction (4)            |
| Problem Solving Skills (3)    | Abstraction (8)             | Variables (3)              |
| Video Game Design and Dev (3) | Iteration (7)               | Game Programming (2)       |
| Video Game Design (2)         | Video Game Design(6)        | Video Game Design (2)      |
| Computational Thinking (2)    | Algorithms (4)              | Debugging (2)              |
| Internet (2)                  | 3D Modeling (4)             | Cybersecurity (2)          |
| Cryptography (2)              | Algorithm Logic (4)         | Computing Concepts (2)     |
|                               | Mobile App Development (4)  |                            |
|                               |                             |                            |


Robotics (4)

# Program Data: Type of Activity

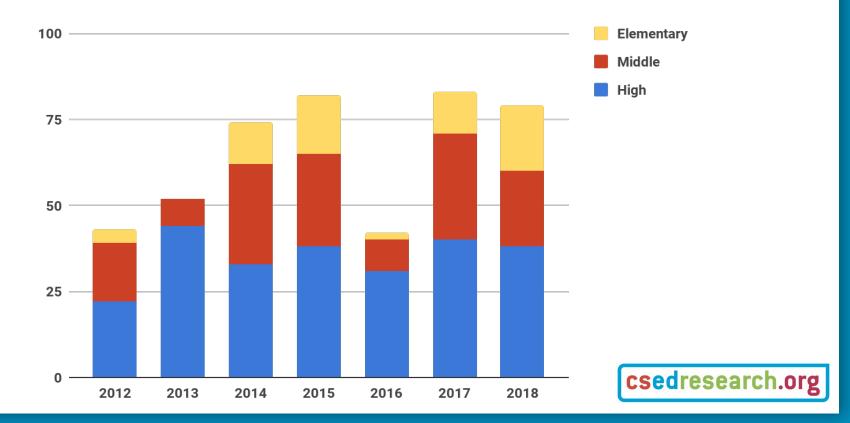





## Program Data: When Activity was Offered



# Program Data: Teaching Methods

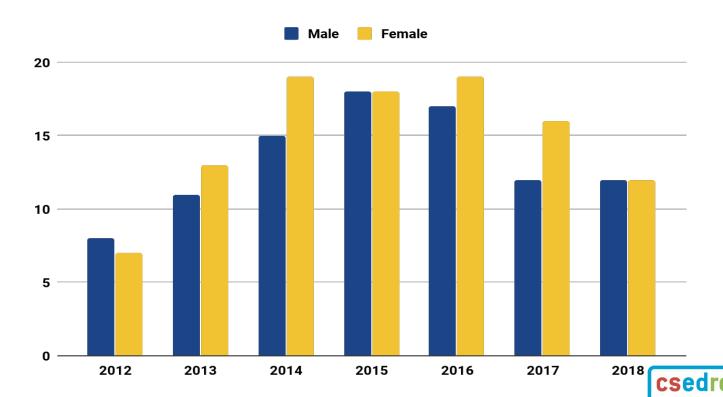



#### Program Data: Tools, Languages, Environments

Top 3 across these years

| 2012             | 2015            | 2018             |
|------------------|-----------------|------------------|
| Scratch (9)      | Scratch (19)    | Scratch (15)     |
| CS Unplugged (3) | Java (6)        | Java (4)         |
| Java (2)         | Applnventor (6) | Python (4)       |
| App Inventor (2) | Python (4)      | App Inventor (3) |
| Python (2)       |                 | Arduino (3)      |
| Alice (2)        |                 |                  |
| CSS (2)          |                 |                  |

#### Student Data: Grade Levels




#### Student Data: Disabilities

- Only 5 out of 178 articles reported information related to disabilities
- Information curated related to disabilities:
  - Disability instruction
  - Receiving disability services
  - Reported Disabilities



#### Student Data: Gender



## Student Data: Race/Ethnicity

|                        | 2012 | 2015 | 2018 |
|------------------------|------|------|------|
| Black/African American | 7    | 15   | 13   |
| White                  | 5    | 9    | 6    |
| Asian/Pacific Islander | 2    | 9    | 11   |
| Latinos                | 3    | 9    | 12   |
| Total                  | 17   | 42   | 42   |

### Student Data: Socio-economic status (SES)

|       | Low SES | Working<br>Class | Middle SES/<br>Professional | High SES | Total |
|-------|---------|------------------|-----------------------------|----------|-------|
| 2012  | 1       | 0                | 0                           | 1        | 2     |
| 2013  | 0       | 0                | 1                           | 0        | 1     |
| 2014  | 9       | 0                | 0                           | 0        | 9     |
| 2015  | 3       | 0                | 1                           | 0        | 4     |
| 2016  | 1       | 0                | 0                           | 0        | 1     |
| 2017  | 7       | 0                | 1                           | 0        | 8     |
| 2018  | 4       | 1                | 1                           | 1        | 7     |
| Total | 25      | 1                | 4                           | 2        | 32    |

#### Discussions and Recommendations

- Lack of consistency in reporting of SES, disabilities, gender, location, and Race/Ethnicity of the students.
  - As well as program data!

- Seems fairly consistent over the last 7 years
  - Indicates lack of progress in reporting



#### Discussion

- Fewer K-12 articles published in 2018 than previous years
- Other factors (e.g. Policies) that affect the reporting of the location of students in the articles.
- Outreach programs and workshops being researched appears to be decreasing as CS is being integrated in the formal curriculum.



#### Recommendations

- Consistency in the reporting of data
  - Reporting states instead of region
  - Both school groups and age
- Reporting of demographic data regardless of the focus of the study
  - If there were participants, there's demographic data



#### Limitations

- Data is manually curated and thus prone to data entry errors
  - Mitigated by a two-reviewer process
- Data curation only categorizes location of students/intervention, not the researchers
  - O So, if authors did not mention where in which state student participants were located, it is not on the map (underrepresentation)
- Several articles may report on one study (overrepresentation)
- Significant underreporting with demographics (underrepresentation)
- Limited to U.S., but this can serve as a model for investigating article data from other countries

#### Conclusion

- Initial indications is that the research landscape is not equitable, but with underreporting difficult to determine
- Lack of reporting of the key demographic data has not improved over the years
- What may have worked in a primarily white upper-middle class suburban school may not work for a poverty level rural school or an ethnically diverse urban school.
  - Or it just may?
  - O Wouldn't it be nice to have the data to show this?



# Thank you!

## Questions?

Bishakha Upadhyaya Knox College bupadhyaya@knox.edu Dr. Monica McGill
Knox College & CSEdResearch.org
monica@csedresearch.org
Twitter: VirtuallyFine

Dr. Adrienne Decker
University at Buffalo
adrienne@buffalo.edu
Twitter: AdrienneMDecker

Follow CSEdResearch.org on Twitter and Facebook!

@csedresearch / csedresearch.org