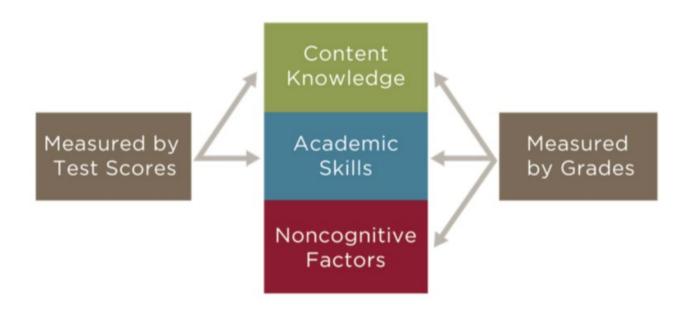
A Gap Analysis of Noncognitive Constructs in Evaluation Instruments Designed for Computing Education

Monica M. McGill Knox College Adrienne Decker
University at
Buffalo

Tom McKlin
The Findings
Group


Kathy Haynie Haynie Research and Evaluation

What are "noncognitive" factors?

- × "...any skills, behaviors, habits, tendencies, traits, and disposition that are typically not measured by tests" Farkus [10]. For example:
 - + Self-efficacy
 - + Study skills of students
 - **★** Support of family and friends
 - + Sense of belonging
- × In psychology, education and economics, cognitive and noncognitive factors are currently understood as **interdependent**
- In research, maintaining a distinction between the two can shed further light on research-based factors within the field of educational psychology [10]

Noncognitive factors affect academic achievement

Research Question

Which noncognitive constructs are (and are not)

currently being measured in instruments

specifically designed for evaluating the

impact of computing education?

Choosing a model – Farrington et al

Farrington et. al. (2012) identify five categories of noncognitive factors as well as their interdependencies:

- × Academic behaviors (attending class, doing homework, etc.)
- Academic perseverance (e.g. grit, self-control, self-discipline)
- Academic mindsets (e.g. positive or negative mindsets related to belonging, abilities, competencies)
- Learning strategies (e.g. study skills, metacognitive strategies, self-regulated learning), and
- Social skills (e.g. interpersonal skills, empathy, cooperation)

Choosing a model - Marzano

Acknowledges the breadth of variables outside students' control that have been shown to impact achievement. Based on effect size from meta-studies:

- × Student-level
- × Teacher-level
 - Individual teacher effects, instructional strategies, curriculum design
- × School-level
 - + Guaranteed/viable curriculum, challenging goals, effective feedback,
 - + Parental/ community involvement, safe/orderly environment, and
 - + Collegiality/ professionalism

Choosing a Framework – Lee and Shute (2010)

Acknowledges breadth of variables outside students' control shown to impact achievement. Based on meta-studies measuring effect size.

- × Student Personal
 - × Student Engagement
 - Behavior, Cognitive, Affect
 - Learning Strategies
 - Cognitive, Meta-Cognitive, Behavioral
- × School-level
 - School Climate
 - Academic Emphasis, Teacher Variables, Principal Leadership, Other
 - × Social-Familial Influences
 - × Parental Involvement, Peer Influences

Personal and Social Contextual Factors in K-12 Ed

Student-Personal

Learning

Student Engagement

Coq-

nitive

Behav-

ioral

Affect

Cog-

nitive

Strategies

Meta-

Cogniti

ve

Behav-

ioral

Academic

Emph-

asis

School Climate Teacher Vari-

ables

Princ-Other

ipal

Leaders

hip

Social Contextual

Parental

Involve

ment

Social-Familial Influences Peer Influ-

ences

Methodology

- × csedresearch.org houses all of the instruments in this study
 - + Reviewed 297 articles published from 2012 to 2016 in csedresearch.org
 - + Searched online databases for instruments
 - American Evaluation Association, STELAR, The Pear Institute, Institute for the Integration of Technology into Teaching and Learning, MSPNet, Engineering is Elementary
 - + Searches based on relevant keywords (e.g., computer science, inventory, survey, instrument, evaluation, interest, self-efficacy, etc.).
- × Asked CS ed community for additional instruments (SIGCSE-Members list-serv, computing ed social media)

Methodology

- × 47 evaluation instruments specifically covering computing education
 - + K-12, Undergraduate, Pre-service teachers, Teachers/PD, etc.
- We reviewed each instrument to determine if it measured cognitive or noncognitive factors or assessed programs, or a combination of these
- × Resulted in 31 instruments measuring noncognitive factors

Our other SIGCSE 2019 paper

Table 3: List of Evaluation Instruments

Program	Cog-	Noncog-		Appendix
Evaluation	nitive	nitive	Evaluation Instrument Title	Citation
	X		Algorithm Analysis Concept Inventory	[A-11]
		X	BASICS Study Student Implementation Questionnaire	[A-32]
		X	BASICS Study Teacher Implementation Questionnaire	[A-33]
X			BASICS Study Teacher Interview Guide	[A-34]
X	X	X	CISE REU A La Carte Student Survey	[A-37]
		X	Cognitive Load Component Survey	[A-21]
	X		Commutative Assessment	[A-40]
	X		Computational Thinking Pattern Analysis (CTPA)	[A-17]
	X	X	Computational Thinking Survey	[A-44]
	X		Computational Thinking Test	[A-36]
		X	Computer Anxiety Scale	[A-43]
		X	Computer Attitude Questionnaire (CAQ 5.14)	[A-15]
		X	Computer Attitude Questionnaire (CAQ 5.22)	[A-15]
		Х	Computer Attitude Scale	[A-19]
		X	Computer Programming Self-Efficacy Scale	[A-31]
		X	Computer Science Attitude and Identity Survey (CSAIS)	[A-38]
		X	Computer Science Attitude Survey (Hoegh and Moskal)	[A-14]
		X	Computer Science Attitude Survey (Weibe et al)	[A-42]
		X	Computer Science Interest Survey	[A-2]

Or...

Visit csedresearch.org

As new instruments are posted, we send notifications to twitter: @csedresearch

Want to learn more?

Visit us at the NSF Showcase at 3pm (immediately following this session!).

We would love to chat.

Data Analysis

- Once surveys were identified, we reviewed each construct according to the formal definitions provided by Lee and Shute
- × If the evaluation instruments states "Self-Efficacy" but constructs measured fall into different categories as defined by Lee & Shute
 - + We place those constructs not under Self-Efficacy, but in the proper buckets

Constructs Found via the Lee and Shute model

Component	Total Constructs	Unique Constructs
Student Engagement	82	65
Learning Strategies	8	8
School Climate	36	36
School-Familial Influences	6	6
Total	132	115

Personal and Social Contextual Factors in K-12 Education

Student-Personal

Social Contextual

Student Engagement 82/65

Learning Strategies 8/8

School Climate 36/36 Social-Familial Influences 6/6

Student Engagement (Table 1 Summary)

Subcomp- onent	Includes constructs such as	Total	Unique
Behavior	Contributions to small group work, Engagement in cognitively demanding work, Engagement in discussion	6	6
Cognition	Attribution for success/failure, Confidence, Goal Orientation, Outcome Expectancy, Self-efficacy, Self-concept. Self-discipline,	33	30
Affect	Feeling towards school/learning, Feeling proud of academic accomplishments, Sense of belonging/identification, Interest/curiosity	43	29
Subtotal		82	65

Subtotal

Learning Strategies (Table 2 Summary)			
Subcomp- onent	Includes constructs such as	Tota I	Unique
Cognition	Instances and sources of repairs (State mentor question correction by teacher or student)	1	1
Meta- cognition	Is focus of learning on the "how" or the "why", Knowledge Transfer, Perception of impact of a computer game on learning, Problem solving strategies, Self-assessed level of technological adoption	5	5
Behavior	Help-seeking, Homework Management, Study Habits NOTE: No instruments measure Time Management, Test-taking and Note-taking Strategies	2	2

8

School Climate (Table 3 Summary)

Subcomp- onent	Includes constructs such as	Total	Unique
Academic Emphasis	Like/dislike of school	1	1
Teacher Variables	Motivation, Affect, Cognition, Meta-cognition	28	28
Principal Leadership		0	0
Other School Variables	Parental Involvement, Peer Influences	7	7
Subtotal		36	36

Social-Familial Influences (Table 4 Summary)

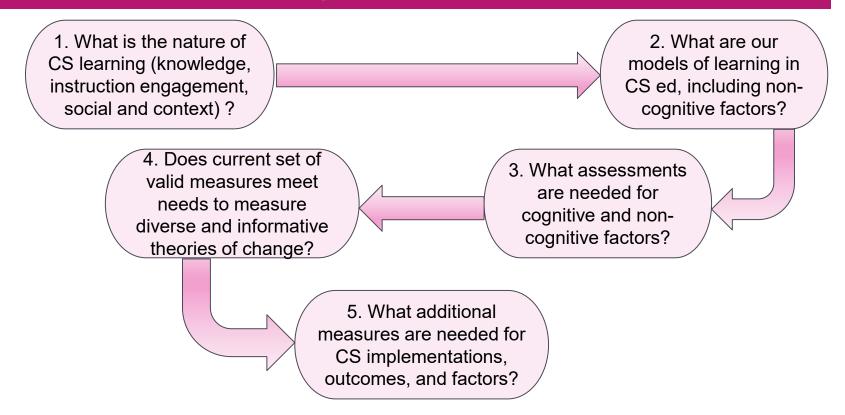
Subcomp- onent	Includes constructs such as	Total	Unique
Parental Involvement	Importance of learning computing, Perceptions of careers in computing, Perspective on computing, Support for pursuit of computing careers	4	4
Peer Influences	Friends/family in CS, Friends/family interest in CS	2	2
Subtotal		6	6

Evaluation Instruments in Computing Education

- Our Strengths (kind of....)
 - + Student Engagement Cognition (30)
 - + Student Engagement Affect (29)
 - + School Climate Teacher Variables (28)
- Our Weaknesses
 - + School Climate -> Principal Leadership (o), Academic Emphasis (1)
 - + Learning Strategies -> Cognition (1), Behavior (1)
 - + Social-Familial Influences -> Peer Influences (2), Parental Involvement (4)
 - Learning Strategies -> Meta-cognition (5)

Discussion and Implications

- × Taxonomy of noncognitive factors in K-12 learning (Lee & Shute) that reveals:
 - Currently, what we found primarily measures students' cognitive-motivational and emotional engagement
 - + Lacking valid measures of student learning strategies, school, and social-familial variables


× Limitations

- + Framework is based on studies from K-12 and limited set of evaluation instruments
- May miss higher education contributions
- + Does not fully reflect recent CS education research (e.g., elementary and middle schools)

Larger Questions this Study Raises

- × Which constructs and components contribute most to student success? Effect sizes?
- × Is there currently enough data on women and underrepresented populations?
- Do we know, adequately, which constructs predict success among these populations?
- × And....

Drive Measures Development for CS Ed Research

Conclusion and Next Steps

- Consider this a draft periodic table a landscape of constructs informing student success
- Reveals the strengths and gaps of our existing toolbox of measures
- × Could be reviewed "periodically" (1x year?)
 - + Does it reflect and support best theories of learning for all grade levels and all underrepresented populations?
 - + Does it help researchers select the most sensitive, valid, reliable measures for interventions?

We are inviting you to join this dialogue!

Thank you!

Monica M. McGill

Knox College
@virtuallyfine
mmmcgill@knox.edu

Tom McKlin

The Findings Group tom@thefindingsgroup.org

Adrienne Decker

University at Buffalo @AdrienneMDecker adrienne@buffalo.edu

Kathy Haynie

Haynie Research and Evaluation kchaynie@alumni.stanford.edu

csedresearch.org
@csedresearch